CO$_2$ Detection: Intubation and Cardiopulmonary Resuscitation
INTRODUCTION

Nearly three million intubations are performed outside of the operating room in the United States each year. A review of literature reveals that approximately 1% to 24% of intubation attempts may result in esophageal intubations, which carry a significant risk of morbidity and mortality. Traditional methods of assessing endotracheal tube placement, including assessment of breath sounds and chest movement, are not always reliable. The most reliable and easiest method for determining the adequacy of endotracheal tube placement is the detection of carbon dioxide in the patient’s exhaled gas.

The purpose of this monograph is to review the incidence and causes of esophageal intubation and to discuss a carbon dioxide detection strategy that can decrease the morbidity and mortality associated with esophageal intubations. The physiology of carbon dioxide production and elimination will be reviewed and discussed in relation to carbon dioxide detection. This monograph will also include a discussion of carbon dioxide detection issues during cardiopulmonary arrest and cardiopulmonary resuscitation.
BEHAVIORAL OBJECTIVES

By the end of this session, the learner will be able to:

1. Identify three commonly used techniques for assessing endotracheal tube placement and reasons why these techniques may be incorrect in verifying endotracheal intubation.

2. State the value of carbon dioxide detection in assessing proper endotracheal tube placement.

3. State the effect of cardiopulmonary arrest on end-tidal carbon dioxide.

4. Review the color change response of the *Easy Cap II®, Pedi-Cap®,* and CO₂ Plus CO₂ detectors and appropriate clinical interventions for each color range.
A recent review of literature reveals that from 1% to 24% of emergency intubations result in esophageal intubations.1,2,3,4 The most common consequences of undetected esophageal intubation are death or permanent brain damage. In an analysis of 1541 closed anesthesia malpractice claims, esophageal intubations accounted for 18% of the 522 respiratory claims. Of particular importance, 98% of these esophageal intubations resulted in death or permanent brain damage, and 82% of the claims were paid, with judgements as high as $3.4 million.5

Successful endotracheal intubation requires the placement of orotracheal or nasotracheal tubes directly into the trachea. Endotracheal intubation outside of the operating room commonly occurs under emergency circumstances marked by less-than-ideal conditions. Intubation attempts may fail to result in tracheal placement for several reasons. The patient may have a difficult airway, because of anatomic abnormalities or injury of the head and neck. Airway edema may be present, occurring as a result of respiratory disease or prior airway instrumentation. Excessive blood and secretions in the upper airway may interfere with the ability to visualize the vocal cords. The environmental conditions associated with emergency intubations, including adverse weather, lighting, noise, and equipment resources, may also increase the difficulty of intubations. The pediatric and obese patient may present difficult intubation challenges.

Several traditional methods of assessing accurate endotracheal tube placement have demonstrated incidences of fallibility. Potential causes of error from relying on these methods include:

<table>
<thead>
<tr>
<th>Method</th>
<th>Potential Source of Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct visualization of the endotracheal tube through the vocal cords</td>
<td>unable to visualize due to anatomy or trauma; excessive blood and secretions in the upper airway; inadvertent tube movement during position change or during taping procedures4,6,7,8,9,10</td>
</tr>
<tr>
<td>observation of chest wall movement</td>
<td>rigid chest wall, obesity, large breasts; chest wall movement has been documented with esophageal tube placement6,11,19</td>
</tr>
<tr>
<td>auscultation of breath sounds</td>
<td>“normal” breaths sounds documented with esophageal tube placement; movement of air through esophageal tube may be similar to true breath sounds6,11,12,13</td>
</tr>
<tr>
<td>Method (continued)</td>
<td>Potential Source of Error</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>epigastric auscultation and</td>
<td>breath sounds can be transmitted to the epigastric area, especially in a thin patient; gastric distension can be difficult to distinguish and may be attributed to mask ventilation prior to intubation(^9,11)</td>
</tr>
<tr>
<td>observation</td>
<td></td>
</tr>
<tr>
<td>presence of exhaled tidal volumes</td>
<td>measurable tidal volumes have been documented with esophageal intubation(^14)</td>
</tr>
<tr>
<td>assessment of reservoir bag compliance</td>
<td>repeated filling and emptying of stomach with esophageal intubation can cause breathing bag to inflate and deflate(^9,11,15)</td>
</tr>
<tr>
<td>endotracheal tube cuff maneuvers</td>
<td>distinction in sounds from air leak around deflated tube cuff does not clearly vary with tracheal and esophageal tube positions(^11,15)</td>
</tr>
<tr>
<td>observation of condensation in the</td>
<td>condensation can occur with esophageal tube placement(^6)</td>
</tr>
<tr>
<td>endotracheal tube</td>
<td></td>
</tr>
<tr>
<td>chest radiography</td>
<td>interpretative error has been documented; not always available and could delay diagnosis(^6,16)</td>
</tr>
</tbody>
</table>

Even if the typical assessment techniques listed above suggest proper endotracheal tube placement, the tube may be inadvertently dislodged during patient motion or transport.

The most reliable and easiest method for determining the adequacy of endotracheal tube placement is the detection of carbon dioxide in the exhaled patient gas.\(^6,9\) Carbon dioxide is produced by the lungs and exhaled through the trachea. Carbon dioxide is not normally produced in the stomach, but it may be present if the patient has consumed carbonated beverages or certain medications, or if the carbon dioxide that exits from the lungs has been transported into the esophagus during ventilation. If the endotracheal tube is inadvertently placed into the esophagus, a small amount of carbon dioxide may be present, but this is rapidly eliminated within the first few breaths.\(^17\) A carbon dioxide detection device may detect the presence of carbon dioxide immediately after intubation, but should cease to do so after about the first six breaths. A failure to detect carbon dioxide after this time suggests esophageal intubation in the patient with adequate blood flow to the lungs.
Carbon dioxide (CO₂) is a waste product of normal cellular metabolism. CO₂ leaves the cells and is carried by the venous blood to the heart and lungs. Once CO₂ reaches the lungs, it is eliminated in the process of exhalation. In order for CO₂ to be effectively eliminated from the body, there must be adequate blood flow to the lungs, adequate gas exchange across the alveolar-capillary membrane, and adequate ventilation of the lungs to “blow off” the CO₂.

The amount of CO₂ that is eliminated from the lungs can be measured with the placement of a CO₂ sensor at the patient’s airway. The amount of CO₂ detected at the end of exhalation is referred to as end-tidal CO₂, or ETCO₂. This end-tidal value normally falls within a range of 35 to 45 mmHg. During inspiration, when the patient normally breathes in CO₂ free gas, no CO₂ is normally detected, and the ETCO₂ returns to zero.

ETCO₂ Waveform

![ETCO₂ Waveform Diagram]

Decreased blood flow and ETCO₂
If venous blood flow to the lungs is normal, CO₂ is transported to the lungs where it can be eliminated during exhalation. When little or no blood returns to the lungs, such as may occur with pulmonary embolism, hypovolemia, and hypotension, little carbon dioxide may be carried back to the lungs. Consequently, the concentration of CO₂ in the exhaled gas will be decreased below the normal range of 35 to 45 mmHg. This drop in end-tidal CO₂ will depend on the degree to which this blood flow back to the lungs has been compromised. For example, a small pulmonary embolism may decrease end-tidal CO₂ by a small amount, whereas a large pulmonary embolism can decrease end-tidal CO₂ significantly. Electronic or disposable CO₂ detection devices will show these lower-than-normal carbon dioxide levels in exhaled gas.

Cardiac arrest, CPR, and ETCO₂

During cardiac arrest, the heart is unable to pump blood throughout the body. CO₂ continues to be produced by the tissues, but it is not transported to the lungs in the venous blood. CO₂ is not normally present in the exhaled gases during non-cardiopulmonary resuscitation (CPR) cardiac arrest.

CPR includes the application of chest compressions to mechanically transport oxygenated blood to the tissues and carbon dioxide back to the lungs where it can be exhaled. With effective compressions, it is possible to detect lower-than-normal CO₂ concentrations in exhaled gases. These concentrations may range from 0.5% to 2.5%. Therefore, CO₂ detection devices may provide useful information about the effectiveness of cardiopulmonary resuscitation. With return of spontaneous circulation that occurs with successful resuscitation efforts, normal ETCO₂ concentrations are commonly detected.²,³,¹⁸,¹⁹
A CO₂ measurement device can be placed at the end of the endotracheal tube to determine the presence of CO₂ throughout the breathing cycle. With proper placement of the endotracheal tube into the trachea, CO₂ should be detected at the end of exhalation. CO₂ will normally not be detected after six breaths if the tube is placed in the esophagus. CO₂ is not normally detected during inspiration since the patient is usually breathing CO₂ free gas.

CO₂ detection systems may be continuous, electronic devices, or they may be a disposable device designed for short-term monitoring. Electronic CO₂ detection systems typically use infrared light to determine the CO₂ concentration in exhaled gases. A disposable CO₂ detector demonstrates color changes in the presence of CO₂. Each of these CO₂ detectors will be examined in more detail.

Electronic CO₂ Detection

Electronic CO₂ detection systems may be used to monitor the presence of exhaled CO₂ on a short- or long-term basis. A CO₂ sensing device may be placed directly on the patient’s airway, or the patient’s gases may be diverted away from the airway to the CO₂ sensor.

The most common type of CO₂ detector uses infrared light to determine the concentration of CO₂ in the exhaled gas. Infrared light is used because it is absorbed by CO₂, and the amount of light that is absorbed is translated into a CO₂ measurement.

Some electronic CO₂ detection technologies may provide a capnograph, or CO₂ waveform, along with continuous numeric information about the concentration of CO₂. Other technologies may provide semiquantitative information about the CO₂ concentration at the end of exhalation.

Electronic CO₂ detection and monitoring systems are commonly used at the bedside in the inpatient setting, whenever anesthesia is delivered, and during intrahospital transport of the patient.

Colormetric CO₂ Detectors

Colormetric CO₂ detectors are simple, reliable, and disposable CO₂ detection systems that are commercially available and can provide validation of the presence of CO₂ in a patient’s exhaled gas. These products have broadened the capability to validate the presence of CO₂ after intubations in nearly any clinical situation.
These devices, commercially known as the *Easy Cap II* and *Pedi-Cap* ETCO$_2$ detectors, are disposable, lightweight devices that fit all standard airway connectors. These are placed onto the endotracheal tube during intubation and can reliably detect CO$_2$ on a breath-by-breath basis for up to two hours.

These CO$_2$ detectors contain a nontoxic chemical indicator that quickly responds to exhaled CO$_2$ by a reversible color change. The color changes from exhalation to inspiration as CO$_2$ levels rise and fall. The CO$_2$ detectors are normally purple in the absence of CO$_2$, change to tan or yellow in the presence of higher concentrations of CO$_2$, and return to purple during inspiration of gas that is normally free from CO$_2$.

The color on the CO$_2$ detectors will fall into one of three ranges depending on the CO$_2$ concentrations. These colors, and their associated ranges of CO$_2$, are as follows:

- **“A” range** Purple approximately 0.03 to < 0.5% ETCO$_2$ (<4 mmHg*)
- **“B” range** Tan approximately 0.5 to < 2% ETCO$_2$ (4 to < 15 mmHg*)
- **“C” range** Yellow approximately 2 to 5% ETCO$_2$ (15 to 38 mmHg*)

* mmHg range for sea level
Interpreting Color Changes:

Color Range “A” (purple) during exhalation: When the endotracheal tube is incorrectly positioned in the esophagus, the CO₂ detector will remain purple during inspiration and exhalation. A continued purple color after six breaths in the patient with adequate blood flow indicates esophageal intubation. A continuous purple color may also occur during cardiac arrest without compressions, or with ineffective compressions, even if the trachea is correctly intubated.²⁰,²¹

Both of these problems require immediate attention. An uncorrected, continuous purple color usually indicates that gas exchange is insufficient to support patient survival.

Color Range “B” (tan) during exhalation: During conditions where blood flow to the lungs is decreased, or when CO₂ production is decreased (hypocarbia), the CO₂ detectors may change to tan at the end of exhalation. The tan color may also initially appear during end-exhalation within the first six breaths if some CO₂ is present in the stomach, but after six more breaths have been delivered, any retained CO₂ will have been cleared. If the color changes to the purple range after six additional breaths have been delivered, two possibilities exist: the endotracheal tube may not be in the trachea or there is low blood flow to the lungs, such as occurs with cardiac arrest or inadequate chest compressions. If the color remains tan, the endotracheal tube is in the trachea, but the patient has decreased blood flow to the lungs or decreased CO₂ production.

Color Range “C” (yellow) during exhalation: If the trachea is properly intubated and blood flow to the lungs is adequate, the CO₂ detectors will change to a yellow color during exhalation. This rules out esophageal intubation and indicates that the lungs are being ventilated.

During cardiac arrest, a dramatic improvement in the CO₂ detectors’ color (e.g., from the purple or tan range to the yellow range) indicates a large increase in ETCO₂. This usually signals the return of spontaneous circulation. The American Heart Association standards recommend confirming this by checking the carotid pulse.²²
During cardiopulmonary arrest, blood that contains CO₂ is not returned to the lungs, so CO₂ is not eliminated during exhalation. The CO₂ detectors will remain purple during exhalation as well as inspiration, even if the trachea is correctly intubated. Appropriate clinical action should be taken to restore pulmonary blood flow.

During CPR with effective compressions, some blood should circulate back to the lungs, so some CO₂ should be eliminated during exhalation. The detector may turn to tan or possibly even yellow during effective CPR. A change in rescuers during CPR has been associated with color changes from purple to tan if the new rescuer is delivering more effective compressions.

If spontaneous circulation is restored as a result of effective CPR, the CO₂ detectors may turn yellow since CO₂ that has been built up in the tissues is suddenly returned to the lungs.
The following decision tree highlights recommended clinical actions for various ranges of end-tidal CO2. Connect the CO2 detector to the endotracheal (ET) tube. After six full breaths, evaluate the CO2 detector color.

Adequate Perfusion—Spontaneous Heartbeat

Color Range “A”

- 0.03% to < 0.5% ETCO2
- < 4 mmHg*

 - ET tube not in trachea
 - Reinsert tube
 - Recheck using CO2 detector

Color Range “B”

- 0.5% to < 2% ETCO2
- 4 to < 15 mmHg*

 - Retained CO2 in esophagus or low perfusion or hypocarbia
 - Deliver six more breaths
 - Color remains tan
 - ET tube in trachea with low perfusion or hypocarbia

Color Range “C”

- 2% to 5% ETCO2
- 15 to 38 mmHg*

 - ET tube in trachea†
 - Secure tube
 - Continue to observe color change

Poor Perfusion—Cardiac Arrest

Color Range “A”

- 0.03% to < 0.5% ETCO2
- < 4 mmHg*

 - ET tube not in trachea or inadequate perfusion (Ineffective CPR)
 - Check if ET tube is through vocal cords
 - NO
 - ET tube not in trachea
 - Reinsert tube
 - Recheck using CO2 detector
 - YES
 - ET tube in trachea with inadequate perfusion
 - Take appropriate clinical action

Color Range “B”

- 0.5% to < 2% ETCO2
- 4 to < 15 mmHg*

 - Retained CO2 in esophagus or low perfusion
 - Deliver six more breaths
 - Color remains tan
 - ET tube in trachea with low perfusion

Color Range “C”

- 2% to 5% ETCO2
- 15 to 38 mmHg*

 - ET tube in trachea†
 - Secure tube
 - Continue to observe color change

* mmHg range for sea level

† May also occur if the ET tube is in the posterior pharynx and ventilation is occurring.
The CO₂ detectors can provide continuous information about the presence of CO₂ in the exhaled gas for up to 2 hours. Reflux of gastric contents, secretions, or fluids can produce a permanent, patchy yellow or white color on the detector, and the detector must be replaced to ensure reliable readings.

Some drugs that are delivered through the trachea, including epinephrine, can also cause the detector to turn a permanent, patchy yellow or white color if they come in contact with the color indicator on the CO₂ detector. It is easy to recognize this because the detector does not turn purple during inspiration. When administering a drug through the endotracheal tube, remove the CO₂ detector and then administer the drug. Reattach the detector after the risk of reflux has passed.

Certain drugs can affect the actual end-tidal CO₂ value. Intravenous sodium bicarbonate can produce a temporary increase in end-tidal CO₂, which will be reflected by the CO₂ detector as a temporary movement towards the tan or yellow range. However, this change disappears after a few minutes and may be less intense than that seen with the return of spontaneous heartbeats.

Additionally, high-dose intravenous epinephrine (for example, 0.2 mg/kg) has been shown to decrease end-tidal CO₂. Therefore, it would be expected to produce a corresponding color change in the CO₂ detector.

Contamination of the CO₂ detector with particulate matter (i.e., vomitus, activated charcoal) may increase airway resistance and affect patient ventilation.
CO₂ detection devices should be used whenever patients are intubated. After proper tube placement is validated, they should continue to be used to verify the presence of CO₂ in exhaled gases. Disposable CO₂ detection devices can be used in many clinical situations. They are commonly stocked on code carts, on emergency transport vehicles and in intubation kits, and in special procedure areas.²⁵,²⁶,²⁷

Many emergency transport services and institutions have established protocols that require clinicians to check for the presence of CO₂ in exhaled gas after intubation, and in the management and transportation of all intubated patients.

With consistent use of CO₂ detection devices for emergency intubations, the unfortunate incidence of esophageal intubations, and their associated morbidity and mortality, can be reduced.
1. Of the following methods for ruling out esophageal intubation, which method is regarded as the most reliable?
 a. Assessment of bilateral breath sounds.
 b. Presence of condensation in the endotracheal tube.
 c. Assessment of reservoir bag compliance.
 d. Presence of CO₂ in the patient’s exhaled gas.

2. Immediately after intubating your patient, you notice small amounts of CO₂ in your patient’s exhaled gas. Which of the following is a true statement:
 a. You can be certain that the endotracheal tube is positioned in the trachea.
 b. If a small amount of CO₂ is still present after six breaths, you have an esophageal intubation with retained CO₂ in the stomach.
 c. If CO₂ is still present after 12 breaths, the endotracheal tube is in the trachea.
 d. Your patient is probably about to have a cardiac arrest.

3. You arrive on the scene and find a patient who appears to be in complete cardiac arrest. You immediately intubate the patient and initiate chest compressions, but your CO₂ detector remains purple in color, even during exhalation. Which of the following statements most accurately reflects your patient’s situation?
 a. Your patient shows poor prognostic signs of recovery and you should discontinue resuscitation.
 b. The trachea is definitely not intubated.
 c. Compressions are definitely not effective.
 d. Your patient must be carefully assessed because the trachea may not be intubated and/or compressions may be ineffective for circulation of blood.

4. A sudden change in color on the CO₂ detector from tan to yellow during cardiac compressions may indicate:
 a. Dislocation of the endotracheal tube into the esophagus.
 b. Ineffective chest compressions.
 c. Return of spontaneous circulation.
 d. Ensured survival of the patient.
1. (d) Presence of CO₂ in the patient’s exhaled gas.

2. (c) If CO₂ is still present after 12 breaths, the endotracheal tube is in the trachea.

3. (d) Your patient must be carefully assessed because the trachea may not be intubated and/or compressions may be ineffective for circulation of blood.

4. (c) Return of spontaneous circulation.
REFERENCES

TABLE OF CONTENTS

Introduction .. 1
Behavioral Objectives .. 2
Esophageal Intubation: Risk, Consequences, and Causes ... 3
Carbon Dioxide: Physiology .. 5
Carbon Dioxide: Detection and Measurement ... 7
Carbon Dioxide Detection During Cardiac Arrest and Cardiopulmonary Resuscitation ... 10
CO₂ Detector: Decision Tree... 11
CO₂ Detection: Clinical Considerations .. 12
Clinical Applications .. 13
Post-Test .. 14
Post-Test Answers ... 15
References ...16

CO₂ Detection